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Abstract. In this second paper, using N = 3 polarized electrons (spinless fermions) interacting via a U/r
Coulomb repulsion on a two dimensional L×L square lattice with periodic boundary conditions and nearest
neighbor hopping t, we show that a single unpaired fermion can co-exist with a correlated two particle
Wigner molecule for intermediate values of the Coulomb energy to kinetic energy ratio rs = UL/(2t

√
πN).

This supports in an ultimate mesoscopic limit a possibility proposed by Andreev and Lifshitz for the
thermodynamic limit: a quantum crystal may have delocalized defects without melting, the number of sites
of the crystalline array being smaller than the total number of particles. When L = 6, the ground state
exhibits four regimes as rs increases: a Hartree-Fock regime, a first supersolid regime where a correlated
pair co-exists with a third fully delocalized particle, a second supersolid regime where the third particle is
partly delocalized, and eventually a correlated lattice regime.

PACS. 71.10.-w Theories and models of many-electron systems – 73.21.La Quantum dots –
73.20.Qt Electron solids

1 Introduction

In 1969, it was conjectured by Andreev and Lifshitz [1]
that at zero temperature, delocalized defects may exist
in a quantum solid, as a result of which the number of
sites of an ideal crystal lattice may not coincide with the
total number of particles. Originally, this conjecture was
proposed for three dimensional quantum solids made of
atoms (He3, He4, . . .) which do not interact via Coulomb
repulsion. We re-visit such a possibility for electron solids
with long range Coulomb repulsion in two dimensions.
The motivation to re-visit nowadays this issue comes from
questions raised by the physics of electrons in Si MOS-
FETs and similar 2d field effect devices. An unexpected
low temperature metallic behavior [2] has been observed at
intermediate values of the Coulomb energy to kinetic en-
ergy ratio rs, which remains unexplained. Another actual
motivation is given by the promising perspectives opened
by trapped cold ion systems, where one can study how a
Wigner molecule becomes a quantum fluid when the ions
are squeezed [3].

In a first paper [4], the supersolid phase conjectured [1]
by Andreev and Lifshitz was introduced, together with

a e-mail: jpichard@cea.fr

a related variational approach using a fixed number of
fermions BCS wave function [5] of Bouchaud et al. The
question is to know if a system of unpaired electrons with
a reduced Fermi energy can co-exist with an ordered ar-
ray of charges, the number of sites of the crystalline array
being smaller than the total number of electrons. In ref-
erence [4], this question was investigated using N = 4
spinless fermions interacting via a U/r Coulomb repul-
sion in a two dimensional 6 × 6 square lattice with pe-
riodic boundary conditions (BCs) and nearest neighbor
hopping t. It was observed that for intermediate ratios
rs = UL/(2t

√
πN) (typically for 10 < rs < 28), the

ground state (GS) is in a mixed state, where unpaired de-
localized fermions co-exist with a strongly paired, nearly
solid assembly. From the study of the different inter-
particle spacings as rs increases, it was concluded that
before having full Wigner crystallization, a floppy three
particle Wigner molecule is formed, while the fourth par-
ticle remains delocalized. We consider in this second pa-
per the ultimate limit N = 3, where it is still possible to
exactly study if a correlated two particle molecule can co-
exist with a third delocalized particle. As in the first paper,
the study is restricted to fully polarized electrons (spinless
fermions) having anti-symmetric orbital wave functions.
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A study involving the spin degrees of freedom can be found
in reference [6].

The paper is organized as follows. Once the lattice
model is defined in Section 2, the three regimes charac-
terizing the formation of a two particle Wigner molecule
(2PWM) on an empty periodic lattice are summarized
in Section 3 and in Appendix A: a weak coupling Fermi
regime, a correlated Wigner regime with harmonic oscil-
latory motions of the particles around equilibrium, and a
correlated lattice regime where these oscillatory motions
become damped by the lattice. The weak coupling Fermi
limit and the strong coupling correlated lattice limit of the
three particle system are described in Sections 4 and 5. An
additional discussion of the correlated lattice limit when
L → ∞ is given in Appendix B both for the zero density
limit (keeping N = 3) and for the constant density limit
(taking N = L2/9 − 1). The threshold rF

s above which a
weak coupling expansion in powers of U/t and the thresh-
old r∗s under which a strong coupling lattice expansion in
powers of t/U cease to be valid are defined in Section 6.
Taking L = 6, one gets the range of intermediate values
rF
s ≈ 6 < rs < r∗s ≈ 180 where the GS structure is non-

trivial. A simple ansatz for the GS wave function, first
introduced in reference [7], is studied in Section 7, cor-
responding to a 2PWM co-existing with a third particle
which remains partly delocalized in the direction parallel
to the 2PWM. The ansatz combines two possible direc-
tions for the 2PWM and a delocalized center of mass. This
defines the concept of a partially melted Wigner molecule
(PMWM) near the lattice limit, and describes the three
particle GS at rs ≈ 40, when the 2PWM oscillations are
taken into account using a lattice t/U expansion. In Sec-
tion 8 we show that when rs is further decreased, the GS
is made of a floppy 2PWM with large oscillatory motions
which are not damped by the lattice, co-existing with a
third fully delocalized particle. The unpaired particle sim-
ply provides a uniform background density for the 2PWM.
The total momentum K2 of the 2PWM and the momen-
tum k3 of the third particle satisfy the conservation of the
total momentum K = K2 + k3. This yields different pos-
sible combinations which contain more than more than
90 % of the exact GS when rs ≈ 10. In Section 9, we
summarize the four regimes found for the three particle
GS when L = 6, pointing out the role of the lattice and
raising the main question: Are those observed supersolid
GSs the ultimate mesoscopic trace of a thermodynamic
supersolid phase proposed by Andreev and Lifshitz, con-
sisting of a N ′ electron solid co-existing with a N − N ′
electron fluid, out of a total number N of electrons? The
GS nodal structure and the occupation numbers Pk on
the reciprocal lattice are studied in Appendices C and D.

2 Lattice model

The Hamiltonian of the L × L square lattice model with
periodic BCs is the same as in reference [4]. Denoting c†j , cj
the creation, annihilation operators of a spinless fermion

at the site j, it reads:

H = −t
∑
〈j,j′〉

c†j cj′ +
U

2

∑
j,j′
j �=j′

njnj′

djj′
· (1)

The effective mass being m∗, t = �
2/(2m∗a2) is the hop-

ping term between nearest neighbors, and U = e2/(εa) is
the Coulomb interaction between two fermions separated
by a lattice spacing a in a medium of dielectric constant ε.
The Coulomb energy to Fermi energy ratio rs becomes in
this lattice model

rs =
U

2t
√
πν

(2)

where ν = N/L2. For L = 6, this gives rs = 0.98U/t if
N = 3 and rs = 1.20U/t if N = 2.

Without disorder, the Hamiltonian (1) is more conve-
niently written using the operators d†k (dk) creating (anni-
hilating) a spinless fermion in a single particle plane wave
state of momentum k. The Hamiltonian (1) becomes:

H = −2t
∑

k

(cos kx + cos ky) d†kdk

+ U
∑

k,k′,q

V (q)d†k+qd
†
k′−qdk′dk (3)

where
V (q) =

1
2L2

∑
j

cosqj
dj0

· (4)

The distance dj0 is defined as the shortest distance be-
tween the sites j and 0 of the square lattice with peri-
odic BCs:

dj0 =
√

min(jx, L− jx)2 + min(jy, L− jy)2. (5)

The states of different total momenta K are decoupled.
Moreover, since the Coulomb repulsion is a two-body in-
teraction, only states of same K havingN−2 k in common
out of N are directly coupled. When N ≥ 3, this means
that the Hamiltonian matrix of a subspace of given K is
sparse.

3 Formation of a two-particle Wigner
molecule on an empty square lattice

Before studying the three particle problem, we summarize
the three regimes characterizing the two particle problem
on an empty lattice. Firstly, it allows us to introduce the
value r∗s above which the lattice effects become impor-
tant. Secondly, it will be useful for analyzing in Section 7
the three particle GS in terms of a two particle Wigner
molecule created on the uniform background provided by
a third delocalized particle.

Following reference [8], we consider the relative
fluctuations

ur =

√〈r2〉 − 〈r〉2
〈r〉 =

∆r

〈r〉 (6)
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Fig. 1. Relative fluctuation ur of the inter-particle distance r
for two particles on an empty L × L square lattice (minus a
finite size correction 0.9/(L+1)2) as a function of rs for L = 6
(dashed line) and L = 12 (continuous line). The smeared inter-
action (Eq. (49)) has been taken. The dotted line corresponds

to the ur ∝ r
−1/4
s behavior derived in Appendix A. Notice the

breakdown of the universal scaling when rs > r∗s(L).

of the distance r between the two particles. This gives
three regimes:
– For rs < rF

s = π3/2, the fluctuation ur keeps essen-
tially its non-interacting value, up to some negligible
perturbative corrections.

– For rF
s < rs < r∗s ∝ L3, ur decays as r−α

s , the two par-
ticles beginning to form a correlated Wigner molecule,
with an oscillatory motion of the particles around the
equilibrium position of the molecule. The interaction
Unjnj′/2djj′ having a cusp at the equilibrium position
if one defines djj′ as previously, the oscillations are not
harmonic and one gets α ≈ 0.31 [8]. Smearing this
cusp, one recovers harmonic oscillations, and α = 1/4,
as shown in Appendix A. This is the harmonic regime
first considered by Wigner [9] (see also Ref. [10]) for
the continuum electron gas.

– If one subtracts a finite size correction ≈ 0.9/(L+ 1)2
(L even) from ur, one obtains a universal scaling law
which depends only on rs ≈ 0.2UL/t (N = 2) with
a crossover from independent particle motion towards
correlated motion at rF

s .
– When rs reaches a higher threshold r∗s , the oscillations

of the inter-particle spacing become of the order
of the lattice spacing a and a lattice expansion in
powers of t/U becomes valid. The continuum-lattice
crossover occurs when ∆r ≈ 2/3 (in units of a). A
t/U expansion giving:

∆r =
t

U
L

√[
(L − 1)2 + 1

](
3 + cos

2π
L

)
(7)

one gets a lattice threshold r∗s ∝ L3. For N = 2 and
L = 6, r∗s ≈ 100. Above r∗s , ur ∝ tL/U is no longer a
universal function of the ratio rs ∝ UL/t.

The three behaviors of ur are given in Figure 4 of ref-
erence [8] for various values of L if one takes the Coulomb
interaction which we assume in this work. The relative
fluctuations ur yielded by a smeared Coulomb interaction
(Eq. (49) of Appendix A) are shown in Figure 1 for L = 6

and 12. One can see that when rs < r∗s , ur−0.9/(L+1)2 is
a universal function of rs with a Fermi-Wigner crossover
at rF

s ≈ π3/2, and that this universal regime ceases to be
valid due to lattice effects when rs exceeds r∗s .

4 The Fermi limit

We begin to study three particles on 6× 6 periodic lattice
when U → 0. In this limit, the eigenstates |Ψ(rs = 0)〉 are
plane-wave states:

|Ψ(rs = 0)〉 = c†k1
c†k2

c†k3
|0〉 , (8)

|0〉 being the vacuum state. The GS energy −10t has a
sixfold degeneracy. A basis of this degenerate eigenspace
can be built using two states of total momentum K =
(0, 0), given by

c†(0,0)c
†
2π
6 (1,0)

c†2π
6 (−1,0)

|0〉 (9)

and its x↔ y-symmetric counterpart, and four states

c†(0,0)c
†
2π
6 (±1,0)

c†2π
6 (0,±1)

|0〉 (10)

of total momenta K = 2π/6(±1,±1).
When U/t is small, one can use perturbation theory

to determine which of those six states have the lowest
energy when one switches on U . At first order, the correc-
tions ∆E(I)

K to the GS energy −10t are given by the diago-
nal elements of the interaction matrix (the two K = (0, 0)
states being decoupled due to the additional x ↔ y sym-
metry). One gets for K = (0, 0)

∆E
(I)
K

U
= 6V (0, 0) − 4V

(
2π
6
, 0
)
− 2V

(
4π
6
, 0
)

(11)

and for K = (2π/6, 2π/6):

∆E
(I)
K

U
= 6V (0, 0) − 4V

(
2π
6
, 0
)
− 2V

(
2π
6
,
2π
6

)
(12)

where the V (qx, qy) are given by equation (4).
The sixfold degeneracy is partly removed by U , the

four states of total momenta K = 2π/6(±1,±1) having
a smaller energy than the two states of K = (0, 0). One
can compare in Figure 2 the exact behaviors and the first
order perturbative expansions (Eqs. (11, 12)) for K =
2π/6(±1,±1) and K = (0, 0) total momenta.

5 The correlated lattice limit

We now consider the limit t→ 0. Without hopping t, the
three particles stay localized on three different lattice sites,
forming configurations which can be ordered by increas-
ing Coulomb energy. For the low energy configurations,
the inter-particle spacings are as large as it is possible
on a periodic square lattice. The first configurations of
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Fig. 2. The GS energies E for K = (0, 0) (thick line) and
K = 2π/6(1, 1) (thick dashed line) as a function of rs. The thin

dotted lines give the behaviors E
(I)

K=(0,0)
= −10t+1.2933U and

E
(I)
K=2π/6(1,1) = −10t + 1.2497U obtained at the leading order

of a U/t expansions (Eqs. (11) and (12)).
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Fig. 3. Some of the low energy configurations with their elec-
trostatic energy on L = 6 lattice.

minimum Coulomb energy are given in Figure 3. Without
disorder, the L2 sites are equivalent, and L2 = 36 identical
configurations can be put on the L × L lattice unless an
extra symmetry or the periodic BCs reduces this number.
This yields large degeneracies when t = 0. For instance the
GS degeneracy is equal to 36, the states being triangles
of Coulomb energy 0.9023U , having different locations or
orientations (see Fig. 4).

This large degeneracy can be partly broken by a hop-
ping term t 
= 0. This can be studied using a perturba-
tion theory starting from the t = 0 triangles and tak-
ing t as a perturbation. The first correction to Coulomb
energy of the L2 triangles is given at the second order.
One gets a uniform shift ∝ t2/U which does not remove
the L2 degeneracy. For the 36 triangles (β = 1 . . . 36) of
energy E

(0)
0 = 0.9023U , one gets the same second order

correction:

∆E
(II)
0β =

∑
α

α �=0

〈Ψ0β |H1|Ψα〉 〈Ψα |H1|Ψ0β〉
(E(0)

0 − Eα)
· (13)

At the third order, two processes become possible for
N = 3 and L = 6: either the N = 3 particles hop to-

hh

r

Fig. 4. The L2 = 36 triangles of Figure 3 can be put on an
effective L×L periodic lattice. The four sectors correspond to
the four possible orientations of the triangles (shown in the cor-
ner), each oriented triangle having L/2×L/2 possible locations
on the original L× L periodic lattice. The first neighbor hops
h and third neighbor hops r correspond to a t/U expansion at
the order N = L/2 = 3.

gether by one lattice spacing in the same direction, such
that the center of mass of the corresponding triangle is
translated by the same hop (hopping term h ∝ tN/UN−1)
or one particle hops over a scale L/2 = 3 (hopping term
r ∝ tL/2/UL/2−1. This L/2 = 3 hop couples two triangles
having in common two sites, i.e. changes the orientation
of the triangle. Those two processes are possible at the
same order when N = L/2, which is our case. Inside the
subspace spanned by the 36 triangles, the translational
invariance is recovered at the order N = L/2 = 3. Each
eigenstate can be now labeled by its quantized total mo-
mentum K. This partly removes the 36 degeneracy of the
triangles. The matrix elements of the 36× 36 secular ma-
trix are given at the order N = L/2 = 3 by:

M
(III)
β,β′ =

∑
α,α′

α,α′ �=0

〈Ψ0β |H1|Ψα〉 〈Ψα |H1|Ψα′〉 〈Ψα |H1|Ψ0β′〉
(E(0)

0 − Eα)(E(0)
0 − Eα′)

,

(14)
where β, β′ labels two different triangles. The diagonal-
ization of this matrix is easy, since we can order the 36 tri-
angles of a 6×6 lattice as indicated in Figure 4. A site j of
this effective lattice corresponds to a triangle, andD†

j (Dj)
are the corresponding creation (annihilation) operators

D†
j = c†j c

†
(jx,jy+3)c

†
(jx+3,jy). (15)

One gets the effective Hamiltonian H(III)
eff :

H
(III)
eff =

∑
j

E
(II)
0 D†

jDj + h
∑
〈j,j′〉

D†
jDj′ +

r

2

∑
〈j,j′〉3

D†
jDj′ ,

(16)
which is identical to a one particle Hamiltonian describing
the motion of a single particle on a 6 × 6 square lattice
with periodic BCs, with first neighbor hopping matrix el-
ement h and third neighbor hopping matrix element r.
h and r are given by the corresponding matrix elements
of M (III)

β,β′ .
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Table 1. The L2 lowest energies given by a t/U expansion up
to order four. The other K-states follow from the x-y, and the
K → −K symmetries.

K × 6/2π Epert

(0, 0) E
(IV )
0 − 4h+ 2r + 4s

(1, 0) E
(IV )
0 − 3h+ s

(1, 1) E
(IV )
0 − 2h− 2r − 2s

(2, 0) E
(IV )
0 − h+ 2r + s

(2, 1) E
(IV )
0 − 2s

(2, 2) E
(IV )
0 + 2h+ 2r − 2s

(3, 0) E
(IV )
0 + 4s

(3, 1) E
(IV )
0 + h− 2r + s

(3, 2) E
(IV )
0 + 3h+ s

(3, 3) E
(IV )
0 + 4h− 2r + 4s

For N = 3 and L = 6, the eigenenergies of H(III)
eff are:

∆E
(III)
K = E

(III)
K − E

(II)
0

= 2h (cosKx + cosKy) + r (cos 3Kx + cos 3Ky) ,
(17)

the results being summarized in Table 1 at the fourth
order of a t/U expansion with:

E
(IV )
0 = 0.9023U − 208.9

t2

U
− 682883

t4

U3
(18)

and h = 1000t3/U2, r = 3320t3/U2 and s = 61926t4/U3.
One can see in Figure 5 that this t/U expansion gives

the exact momenta K of the 36 first states above a last
level crossing at rs = 196. For L = 6, one has no GS
level crossing, having the same four total momenta K =
2π/6(±1,±1) for the four GSs when t → 0 and when
U → 0.

This absence of GS level crossing is a property of the
case N = L/2. If L/2 > N = 3, the GS momentum is
K = 0 when t → 0, and a GS level crossing takes place
as rs increases. This correlated lattice regime in the limit
L→ ∞ is discussed in Appendix B.

Let us now consider one of the GS wave functions of
momentum K, for instance K = 2π/6(1, 1). When t → 0,
it reads

|Ψ0(K)〉 =
1
6

∑
j

eiKjD†
j |0〉 , (19)

and corrections are given at the leading order (first order)
of the t/U expansion by:∣∣∣Ψ (I)

0 (K)
〉

= |Ψ0(K)〉 +
∑

α
α �=0

〈Ψα(K) |H1|Ψ0(K)〉
E

(0)
0 − Eα

|Ψα〉 ·

(20)
Only twelve t → 0 eigenstates |Ψα′(K)〉 are directly cou-
pled to |Ψ0(K)〉 by a single hop (coupling term −t). This
gives:

∣∣∣Ψ (I)
0 (K)

〉
= |Ψ0(K)〉 +

12∑
α′=1

t

∆Eα′
|Ψα′(K)〉 , (21)
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Fig. 5. The 36 lowest energies as a function of rs for all possible
total momenta K. Above the last level crossing indicated by
the arrow the momenta of the 36 first states are given by the
t/U -expansion (Tab. 1).

where ∆Eα′ = Eα′ − E
(0)
0 . The t/U expansion of the av-

erage 〈Ψ0(K, rs) |f |Ψ0(K, rs)〉 of an observable f which
takes definite values over the states |Ψα′(K)〉 are given at
leading order (∝ (t/U)2) by:

〈f〉(II) =
(

1
C

)(II)

f(Ψ0) +
12∑

α′=1

(
t

∆Eα′

)2

f(Ψα′), (22)

where (
1
C

)(II)

= 1 −
12∑

α′=1

(
t

∆Eα′

)2

· (23)

This can be used to calculate the nth moment of the
different inter-particle spacings in the correlated lattice
limit. Each state

|ijl〉 = c†i c
†
j c

†
l |0〉 (24)

is characterized by three inter-particle spacings
rmin(ijl) ≤ rint(ijl) ≤ rmax(ijl). Taking for f

f(rn) =
∑
ijl

|ijl〉 rn(ijl) 〈ijl| (25)

one can calculate the averages 〈r〉, the variances
〈
r2
〉−〈r〉2

and the relative fluctuations

ur =

√
〈r2〉
〈r〉2 − 1 (26)

of rmin, rint and rmax in the correlated lattice limit.
The three relative fluctuations ur are shown in Fig-

ure 6, as a function of rs. One can see that above r∗s ,
they coincide with the behaviors ur(rmin) ≈ 5.49t/U ,
ur(rint) ≈ 4.47t/U and ur(rmax) ≈ 12.34t/U given by
the leading order of the t/U expansion.

6 Breakdowns of the perturbative expansions

When a perturbation is weak, the eigenstates remain lo-
calized in the vicinity of the unperturbed states. Increas-
ing the perturbation delocalizes the eigenstates in the
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Fig. 6. The relative fluctuations ur of the three inter-particle
spacings rmin (solid line) rint (dashed-dotted line) and rmax

(dashed line) as a function of rs. The thin dotted lines give the
perturbative t/U -decays given after equation (26).
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Fig. 7. First energy spacing ∆E(rs) (dotted line) with its two
limits (solid lines – 2t for U → 0 and 0.025U for t → 0), and
spreading widths ΓF (rs) (dashed line) and ΓW (rs) (dashed-
dotted line) calculated from the local densities of states �F (E)
and �W (E) respectively. L = 6 and K = (2π/6, 2π/6). The
arrows indicate the limits rF

s and r∗s between which the per-
turbative expansions are inappropriate.

unperturbed eigenbasis, yielding a crossover [11] from a
weak perturbative mixing of the unperturbed eigenstates
(Rabi oscillations) towards an effective golden-rule decay.
Above the delocalization threshold, an expansion around
the unperturbed eigenbasis does not make sense. This de-
localization threshold is given by a general criterion dis-
cussed in different contexts: onset of quantum chaos in a
many body spectrum [11–13], quasi-particle lifetime and
delocalization in Fock space [14,15]), interaction induced
thermalization [16]: Quantum ergodicity occurs when the
perturbation matrix element 〈i|P |f〉 between an unper-
turbed eigenstate |i〉 to the “first generation” of unper-
turbed eigenstates |f〉 directly coupled to it by the per-
turbation is of the order of their level spacing Ef − Ei:

〈i|P |f〉 ≈ Ei − Ef . (27)

Using this general criterion for the three particle GS, one
can estimate the range of intermediate ratios rs where the
GS cannot be simply described neither in terms of the low

0.1

0.01 0.1 1 10 100

u r

rs

Fig. 8. The relative fluctuations ur of the three distances rmin,
rint and rmax as a function of rs. The dotted lines give the HF
values, which coincide to the actual behaviors up to rHF

s ∼ 1.
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Fig. 9. The GS projection | 〈Ψ0(rs)|Ψ0(rs = 0)〉 |2 over the non-
interacting GS (or HF-GS) as a function of rs. Notice the
breakdown of the HF-behavior at rHF

s ∼ 1.

energy weak coupling eigenstates, nor in terms of the low
energy strong coupling eigenstates.

6.1 Limit of the weak coupling U/t-expansion

When U/t → 0, one can use the Hartree-Fock (HF)
mean-field approximation for the ground state. Since the
charge distribution is uniform without disorder and with
periodic BCs, this approximation becomes trivial. Start-
ing from plane wave states of uniform density, the HF-
approximation consists in studying again a single particle
in a uniform potential. Therefore, the GSs for U = 0 re-
main the self-consistent states of the HF-approximation,
while the HF-eigenenergies are given by the first order
pertubative expressions (see Eqs. (11, 12)). The range of
validity of the HF-approximation can be seen in Figures 2,
8 and 9 for various observables. As one varies rs and for
L = 6, Figure 2 gives the GS-energies, for the total mo-
menta K = 2π/L(1, 1) and K = 2π/L(0, 0) respectively.
The relative fluctuations ur(rs) of the three inter-particle
spacings and the projection

PHF (rs) = |〈Ψ0(rs = 0) | Ψ0(rs)〉|2 (28)

of the actual GSs onto the HF-GSs are given in Figures 8
and 9 respectively, for a total momentum K = 2π/6(1, 1).
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Fig. 10. The dimensionless interaction matrix elements |V (q)|
(see Eq. (4)) as a function of L for different values of q, ex-
hibiting the asymptotic 1/L decay.

These figures show that the HF-approximation remains
valid up to a value rHF

s ≈ 1.
This numerical value for rHF

s is close to the value rF
s

yielded by the general criterion (Eq. (27)) giving the
crossover from a weak perturbative mixing of the unper-
turbed states towards an effective golden-rule decay (de-
localization threshold in Fock space).

Let us first give a qualitative estimate valid for ar-
bitrary values of L and N , where the values of U , t, N
and L appear through the expected dimensionless ratio rs.
Assuming L sufficiently large for having cos(2π/L) ≈
1 − 2(π/L)2, the energy spacing ∆E = E1 − E0 between
the GS and the first excitations for U = 0 reads:

∆E = 2πt
∑

i

(
k2

i1 − k2
i0

) ≈ 2πt (2kF q) ∼ t
√
N

L2
, (29)

since kF ∼ √
N/L and q ∼ 1/L. The interaction matrix

element directly coupling these states reads:

〈0|Hint(q)|1〉 ∼ U

L
, (30)

as shown in Figure 10 for a large enough L. The criterion
(Eq. (27)) ∆E ≈ 〈0|Hint(q)|1〉 gives:

UFL

t
√
N

= const.→ rF
s = const. (31)

For an exact determination of rF
s on 6 × 6 lattice,

we have numerically studied the local density of states
(LDOS) [16],

�F (E) =
∑

i

∣∣〈Ψ0(U = 0) | Ψi(U)〉∣∣2δ(E − Ei(U)) (32)

of the non-interacting GS in the eigenbasis with interac-
tion. This LDOS is a distribution of width ΓF , where �/ΓF

gives the lifetime of the U = 0 states when U is turned
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Fig. 11. GS projection | 〈Ψ0(rs)|Ψα(rs = 0)〉 |2 onto the
non-interacting eigenspaces of increasing energies Eα =
−8t,−7t, . . . and total momentum K = (2π/L, 2π/L) as a
function of rs. Notice the behaviors of the projections onto
the |Ψα(rs = 0)〉 which do not contribute to |Ψ0(rs → ∞)〉
(Eα = −8t,−5t,−2t, t, . . .).

on. Using Fermi golden-rule for estimating ΓF :

ΓF = 2π
∑
1

| 〈0|Hint|1〉 |2�(E1) ∼ U2 |V (q)|2 1
E1 − E0

,

(33)
and since the density of states �(E1) ≈ 1/∆E, crite-
rion (27) corresponds to

ΓF ≈ ∆E. (34)

For K = 2π/6, 2π/6), the GS of energy −10t is directly
coupled to two states of energy −8t by a matrix element
2U(V (2π/6, 2π/6) − V (2π/6, 0)) = 0.091U , and the con-
dition

ΓF = 4π
(0.091U)2

2t
≈ ∆E = 2t, (35)

is satisfied when rF
s ≈ 6. We have also calculated ΓF di-

rectly from �F (E), and one obtains again Γ = ∆E at
rF
s ≈ 6, as shown in Figure 7. One can notice that
– The ratio rF

s (breakdown of a U/t expansion) is larger
than the ratio rHF

s ≈ 1, where the HF-behaviors cease
to be valid (zero order approximation for the wave
function, first order approximation for the energies).

– Figure 11 gives the GS projection over the non-
interacting eigenspaces of increasing energies. The pro-
jection onto the first excitations |1〉 of energy −8t is
particularly interesting. These states are directly cou-
pled by the interaction to the GS for U = 0, but are or-
thogonal to the GS when U → ∞. One can see that the
increase of this projection driven by the U/t expansion
ceases precisely at rF

s . This is the first manifestation
of the correlated limit as U increases.

6.2 Limit of the t/U correlated lattice expansion

We use the criterion (Eq. (27)) for determining the
value r∗s under which the correlated lattice expansion
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breaks down. The matrix element | 〈0|Hkin|1〉 | = t is equal
to the first corresponding energy spacing ∆E for U = U∗,
where U∗ satisfies

t = ∆E ≈
√

2
U∗

L2
+O(L−3), (36)

which yields the threshold:

U∗

tL2
≈ const.→ r∗s ≈ const.× L3. (37)

When rs < r∗s ∝ L3, the GS becomes delocalized in the
rs → ∞ eigenbasis and the t/U expansion breaks down.
This gives the same L-dependence for r∗s than in Section 3.

From the local density of states

�W (E) =
∑

i

∣∣〈Ψ0(U = ∞) | Ψi(U)〉∣∣2δ(E − Ei), (38)

of the GS |Ψ0(U = ∞)〉 when U → ∞ in the eigenba-
sis with interaction, we have calculated the spreading
width ΓW of |Ψ0(U = ∞)〉 when one turns on the kinetic
hopping term t. One can see in Figure 7 that ΓW = ∆E
for r∗s ≈ 180. Above r∗s , the three inter-particle GS spac-
ings are correctly given by the t/U -expansion (see Fig. 6)
and the ordering of the L2 low energy levels correspond to
those given in Table 1, the last level crossing being shown
in Figure 5 at rs ≈ r∗s .

7 Partially melted Wigner molecule near
the correlated lattice limit

We begin to study the GS in the non-perturbative regime
rF
s < rs < r∗s . We first introduce a simple ansatz proposed

in reference [7] and which turns out to describe the GS for
rs ≈ 40. The idea of this ansatz can be given by three
observations:

– As shown in Figures 3 and 4, when rs is large, the
three particles form a triangle, which can be seen as
a square with a ‘vacancy’ at one of its corners. There-
fore, beside the rigid translation of the triangle (hop-
ping term h ∝ t3/U2), there is another possible third
order process: the tunneling of the vacancy (hopping
term r ∝ t3/U2). As rs decreases, the GS may have ad-
vantage to delocalize this vacancy to reduce its kinetic
energy. This will be the “Andreev-Lifshitz supersolid”
in an ultimate mesoscopic limit.

– If one looks at Figure 6, we see that the smallest inter-
particle spacing rmin begins to fluctuate according to
the lattice t/U -expansion above rs ≈ 40 while the
largest one rmax enters into this lattice regime at a
higher value rs ≈ r∗s ≈ 180. The behaviors of rmin

and rmax suggest us that one has for 40 < rs < 180
a partially melted Wigner molecule (PMWM). This
PMWM is composed of a rigid two particle Wigner
molecule (2PWM) with oscillations around the equilib-
rium positions smaller than the lattice spacing a (con-
sistent with the correlated lattice behavior of rmin),

κ = 0

0 1 2 3 4 5
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Fig. 12. Above: Scheme of a x-oriented PMWM: one particle
is totally delocalized in x-direction with a momentum κ, but
remains localized in the y-direction at a distance L/2 = 3
from the two other particles which form a 2PWM. Below: The
GS projection amplitude ψ(x, y) (see Eq. (39)) at rs = 40.
ψ(x, y) is not totally uniform in the x-direction, since there is
the contribution of the y-oriented symmetric PMWM.

while the third particle remains more delocalized, ex-
plaining the absence of a correlated lattice behavior
of rmax.

– One can see the delocalization of the third particle
in the direction parallel to the 2PWM formed by the
two others, in Figure 12, where the GS projection
amplitude

ψ(x, y) =
〈
Ψ0(rs)

∣∣∣c†(1,1)c
†
(4,1)c

†
(x,y)

∣∣∣ 0〉 (39)

is given for rs = 40.

Let us consider a x-oriented state where two particles
are fixed, while the third particle is delocalized along one
line with a momentum κ, as shown in Figure 12:

c†j c
†
j+(3,0)c

†
κ,jy+3 |0〉 · (40)

To satisfy translational symmetry, one defines the x-
oriented PMWM of total momentum K by

|Ψx
κ (K)〉 =

1
N

∑
j

ei(Kj−κjx)

×
∑
j′x

eiκj′xc†j c
†
j+(3,0)c

†
(j′x,jy+3) |0〉 · (41)
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Fig. 13. The GS-projections for K = 2π/6(1, 1) over different
x-oriented PMWMs Ψx

κ (K): solid (κ = 0), dash-dotted (κ =
4π/6) dotted (κ = 8π/6) lines respectively. The upper thin
dashed line gives the total GS-projection over x↔ y symmetric
|Ψκ=0(K)〉.

Then, we combine the x-oriented PMWM with its sym-
metric y-oriented counterpart:

|Ψκ(K)〉 =

√
3
8

(Ψx
κ (K) + Ψy

κ (K)) (42)

for satisfying the x ↔ y symmetry. Moreover, κ can only
take three quantized values (0, 4π/6, 8π/6) for L = 6.

One can follow the delocalization of the third par-
ticle in Figure 13. When rs → ∞, the GS-projections
|〈Ψx

κ (K) | Ψ0(rs)〉|2 over the x-oriented PMWM states of
κ = 0, 4π/6, 8π/6 become equal. This corresponds to a
total localization of the third particle on the line parallel
to the 2PWM, such that the three particles form rigid tri-
angles. When rs ≤ 40, only the contribution with κ = 0
is non-zero: the third particle becomes fully delocalized.
Moreover, if we take the x ↔ y symmetric combination,
we can see that we describe more than 90 % of the the
real GS when rs ≈ 100 < r∗s . If rs is further decreased,
our ansatz have to include some oscillatory motions of
the 2PWMs around equilibrium. If these oscillations are
smaller than the lattice spacing, it is enough to use a sim-
ilar lattice t/U -expansion as in (20), for the 2PWMs only.
Figure 14 shows the improvement of the GS-projection
|〈Ψ̃κ(K) | Ψ0(U)〉|2 when the PMWM oscillations are in-
cluded. The GS-projection over the expanded ansatz ex-
ceeds now 95% at a smaller value of rs ≈ 40 if the t/U -
expansion is extended up to the 2nd order.

Figure 15 shows how the PMWM-ansatz, with 2nd or-
der oscillatory motions of the 2PWMs, describes the root
mean square of the distribution of the three inter-particle
spacings rmin, rint and rmax around rs ≈ 40.

Above r∗s ≈ 180, the “triangles” are formed. Be-
low r∗s , the gradual delocalization of one particle parallel
to a remaining 2PWM with increasing oscillations begins.
Around rs ≈ 40, this delocalization is completed with a
momentum κ = 0. This gives a mixed state, having both
the properties of a “solid” and of a “liquid”. However this

0

0.2

0.4

0.6

0.8

1

1 10 100 1000

P

rs

Fig. 14. GS-projection over the PMWM-ansatz Ψ̃κ=0(K)
when the oscillatory motions of the PMWMs are included up
to 0th (dashed), 1st (dashed-dotted) and 2nd (dotted) orders
of a lattice t/U -expansion.
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Fig. 15. Root mean square ∆r of the three inter-particle spac-
ings rmin, rint and rmax as a function of rs: actual behaviors
(thick lines) and behaviors given by the 2nd order PMWM-
ansatz (dotted lines). The arrows underline the close agreement
for rs ≈ 40.

mixed state exhibits lattice effects and cannot be the final
step of the melting process.

8 Partially melted Wigner molecule near
the Fermi limit

When the interaction is further decreased, two things have
to be taken into account.

– One concerns the “solid”: the amplitudes of the oscil-
latory motions begin to exceed the lattice spacing, and
cannot be described by the lattice t/U expansion.

– The other concerns the “liquid”: the Coulomb repul-
sion cannot be strong enough to maintain the delocal-
ized particle parallel to the correlated pair.

To describe the next step of melting, in the range
rF
s < rs < 40, let us consider the Fermi limit and the
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Table 2. Four different combinations of an unpaired particle
of momentum k3α co-existing with a correlated pair of mo-
mentum K2α. K2α + k3α = K = 2π/6(1, 1) and aα is the pair
inter-particle spacing when U → ∞.

Ψα k3α K2α aα

Ψ1 2π/6(0, 1) 2π/6(1, 0) (3, 3)

Ψ2 2π/6(1, 0) 2π/6(0, 1) (3, 3)

Ψ3 2π/6(0, 0) 2π/6(1, 1) (3, 2)

Ψ4 2π/6(0, 0) 2π/6(1, 1) (2, 3)

picture [5] suggested by Bouchaud et al of a system of un-
paired particles with a reduced Fermi energy co-existing
with strongly paired, nearly solid assembly. For the ul-
timate limit N = 3, this simply means a single corre-
lated pair co-existing with a third particle remaining in its
non-interacting state. The third particle roughly remains
in a plane wave state of uniform density (momentum
k3 = (0, 0), 2π/6(1, 0) or 2π/6(0, 1) if K = 2π/6(1, 1)),
and provides a uniform background for the correlated pair
formed by the two other particles. The occurrence of a
correlated pair is suggested by the breakdown of the U/t-
expansion above rF

s on one side, by the previous PMWM
ansatz on the other side. The conservation of the total
momentum allows us to order these 2+1 particle systems.
Different combinations, given in Table 2, are possible.

In this table, aα is the asymptotic value of the inter-
particle spacing of the pair, if we follow the level to the
limit U → ∞, the asymptotic pair wave function becoming
c†j c

†
j+aα

|0〉. However, for K2 = 2π/6(1, 1), this pair wave
function with a = (3, 3) is zero. In this case, the pair
GS has a twofold degeneracy, with a = (3, 2) and a =
(2, 3). This is why we have four combinations instead of
three, when we keep one particle out of three in its non-
interacting wave function.

Let us begin to consider those four states |Ψα〉, assum-
ing that the pair behaves as rigidly as in the limit rs → ∞:

|Ψα〉 =
∑
j

eiK2αjc†j c
†
j+aα

c†k3α
|0〉 · (43)

Let us first allow oscillatory motion of the pair using the
2nd order lattice t/U -expansion. In Figure 16, one can see
the total GS-projection

P
(II)
A (U) =

4∑
α=1

∣∣∣〈Ψ (II)
α | Ψ0(U)

〉∣∣∣2 (44)

onto these four states. As U decreases, P (II)
A (U) increases,

but saturates below U ≈ 20. This saturation tells us that
the lattice t/U perturbation theory is no longer a suit-
able tool for describing the pair. To improve the GS de-
scription, we numerically calculate the exact wave func-
tion |ΦK2α(U)〉 of the pairs:

|ΦK2α(U)〉 =
∑
k1,k2

k1+k2=K2α

Φα
k1,k2

(U)c†k1
c†k2

|0〉 ; (45)
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Fig. 16. Above: N = 2 particles: Relative fluctuations ur(U)
of the pair GS (solid line – asymptotic spacing a = (3, 3))
and first excited state (dashed line – a = (3, 2) or (2, 3)). The
dotted lines give the three regimes for the pair: (Fermi liquid
– continuous Wigner solid – correlated lattice solid.) Below:
N = 3 particles: GS-projection P0(U) (dashed line) on the
non-interacting GS, and GS-projection (PA(U), solid line) and

(P
(II)
A (U), dotted line) onto the four states given in Table 2

– the pair wave function being calculated exactly or using the
2nd order t/U -expansion respectively.

to have the following ansatz wave function for each
combinations:

∣∣Ψ̄α(U)
〉

=


 ∑

k1,k2
k1+k2=K2α

Φα
k1,k2

(U)c†k1
c†k2


 c†k3α

|0〉 · (46)

The total GS-projection

PA(U) =
∑
(α)

∣∣〈Ψ̄α(U) | Ψ0(U)
〉∣∣2 (47)

over the subspace spanned by the four ansatz states is
given by a solid line in Figure 16 (below). For comparison,
we have also plotted the GS-projection

P0(U) = |〈Ψ0(U = 0) | Ψ0(U)〉|2 (48)

onto the the non-interacting GS (dashed line) of same K.
If one uses unpaired fermions co-existing with correlated
pairs instead of the non-interacting GS, one substantially
improves the description of the intermediate GS above rF

s .
For U ≈ rs = 10, the projection PA(U) exceeds 90%.
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In Figure 16, one can see for the same value of U the
relative fluctuation ur of the corresponding two particle
system, both for the aα = (3, 3) and (3, 2)-states. This
study of the case N = 2 shows that the pairs are nei-
ther in their solid lattice regime, nor in their liquid non-
interacting limit when U ≈ 10, but in their continuous
Wigner regime.

9 Andreev-Lifshitz supersolid for intermediate
couplings?

With this second ansatz, our understanding of the differ-
ent steps of the melting of the three particle system on
a 6 × 6 lattice is achieved. Above r∗s ≈ 180, we have de-
localized correlated triangles and a lattice t/U expansion
is sufficient for describing the L2 low energy states. For
the GS, the melting begins with the partial delocalization
of one particle in the x or y directions down to rs ≈ 40.
This process is the natural extension of the vacancy tun-
neling which is the “softest” degree of freedom of the cor-
related triangle, if one views a triangle as a square with
a vacancy. This delocalization of a single particle is first
one dimensional, parallel to the remaining 2PWMs. For
10 < rs < 40 there is a crossover in the GS-structure. One
particle becomes now totally free while the other two form
a floppy pair with oscillatory motions. One can view this
supersolid GS as a natural extension of the mean field HF
state. Instead of having one particle in the mean field of
the others, one has a pair in the field of the third particle.
This is reminiscent of the BCS ansatz with a fixed number
of fermions proposed in reference [5]. Below rs ≈ rF

s , the
remaining pair melts and one recovers the HF mean field
limit.

As explained in Section 3 for N = 2, above the first
threshold rF

s , one has a continuous Wigner regime (oscil-
lations of the molecule around the equilibrium positions
exceeding the lattice spacing), before having important
lattice effects at a second threshold r∗s ∝ L3. As clear in
Figures 1 and 16, L = 6 is too small to have the expected
correlated three particle Wigner molecule in a continu-
ous regime, without lattice effects. L = 6 is just large
enough for having a partially correlated supersolid regime
free of significant lattice effects. However, the exact di-
agonalization study of N = 3 spinless fermions can be
extended to larger values of L. Such scaling analysis is
in progress. The first results confirm the general picture
emerging from this detailed study of the L = 6 system,
and support, at least for an ultimate mesoscopic limit,
the possibility proposed by Andreev and Lifshitz for the
thermodynamic limit: a quantum crystal may have delo-
calized defects without melting, the number of sites of the
crystalline array being smaller than the total number of
particles.

On one side, one cannot exclude, as already pointed
out in reference [4], that a supersolid regime is favored by
the chosen geometry, because of the number of particles
and underlying square lattice, but not favored at all in the
continuous limit, which has not a square symmetry but a

spontaneously broken hexagonal symmetry. On the other
side, such a supersolid regime is not considered in the
quantum Monte-Carlo (QMC) studies, since these meth-
ods rely on certain assumptions on the GS nodal struc-
tures. We study in Appendix C those nodal structures in
our small lattice model, which turn out to be very complex
for intermediate values of rs, and cannot be approximated
by the nodal structures of the weak or the strong coupling
limits. In Appendix D, the GS occupation numbers in the
reciprocal lattice are given when rs increases, and exhibit
a hybrid structure in the mesoscopic supersolid regimes,
the usual spreading of the “Fermi sea” being accompanied
by the gradual emergence of the Fourier spectrum of the
“Wigner solid”.
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Németh acknowledges the financial support provided through
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der contract HPRN-CT-2000-00144 and the Hungarian Science
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Appendix A: Harmonic oscillatory motion
of a two particle molecule

In this appendix, the oscillatory motion of a two particle
Wigner molecule on an empty L×L lattice with periodic
BCs is studied when rF

s < rs < r∗s . This corresponds to
a Coulomb repulsion which is strong enough for forming
a Wigner molecule, but not strong enough for restricting
the oscillatory motion of the particles around equilibrium
to scales of order of the lattice spacing a (correlated lattice
regime). As earlier noticed, the distance between two sites
on a periodic lattice defined in equation (5) yields a cusp
of the Coulomb repulsion at the equilibrium positions of
the Wigner molecule. The role of this cusp is negligible
in the Fermi limit, but not in the Wigner limit, the os-
cillatory motion of the particles around equilibrium being
located at the cusp. To avoid this complication, we smear
the long range part of the Coulomb repulsion, taking for
the pairwise repulsion between two particles separated by
r in the continuum limit of a system of size D

Vc(r) =
e2π

D

√
sin2 πrx

D + sin2 πry

D

(49)

instead of the previous repulsion Vc(r) = e2/|r| with |r|
defined by equation (5) for a square with periodic BCs.
The corresponding two particle Hamiltonian

Hc = − �
2

2m
(∇2

1 + ∇2
2) + Vc(r) (50)

is the sum of two decoupled terms

Hc = Hc(R) +Hc(r) (51)

when one uses the center of mass R = (r1 +r2)/2 and rel-
ative separation r = r1−r2 coordinates. The Hamiltonian
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Fig. 17. Re-definition of the domain of variation for R and
r in one dimension. The gray area is the original domain 0 <
x1,x2 < D with periodic BCs. Moving the part where R < 0
to the upper triangles, the new domain becomes 0 < R, r < D
with periodic BCs. The bottom left empty circle, which is the
x1 ↔ x2 exchange counterpart of the solid circle, goes to the
empty circle in the upper right triangle.

for the center of mass motion is given by

Hc(R) = − �
2

4m
∇2

R (52)

while the Hamiltonian for the relative motion reads

Hc(r) = −�
2

m
∇2

r + Vc(r). (53)

It is convenient to redefine the domain where R and r
vary such that it becomes again a 2d torus. Figure 17
shows how it can be done in one dimension. This change
of domain modifies the usual symmetry requirement

Ψ(R, r) = Ψ(x1, x2) = −Ψ(x2, x1) = −Ψ(R,−r), (54)

for spinless fermions, since ψ(R,−r) → Ψ(R+D/2,−r+
D). In two dimensions, the symmetry requirement for
spinless fermions after this change of domain becomes:

Ψ(R, r) = −Ψ
(
R +

(
D

2
,
D

2

)
,−r + (D,D)

)
. (55)

The eigenstates of Hc = Hc(R) +Hc(r) take the form:

Ψ(R, r) =
1
D

eiKRψ(r), (56)

the symmetry requirement for ψ(r) being:

ψ(r) =




−ψ
(
(D,D) − r

)
, for D

2π (Kx +Ky) even;

ψ
(
(D,D) − r

)
, for D

2π (Kx +Ky) odd.
(57)

When a sufficient Coulomb repulsion yields small os-
cillation of the inter-particle spacing around its largest
possible value, the Coulomb repulsion can be expanded

and one gets for the relative motion of the two particles a
2d harmonic oscillator Hamiltonian:

Hc(r) = −�
2

m
∇2

r+
e2π

D
√

2
+

e2π3

D3
√

32

∣∣∣∣r −
(
D

2
,
D

2

)∣∣∣∣
2

· (58)

For a 2d harmonic oscillator

Hosc = − �
2

2m
∇2

r +
mω2

2
|r|2, (59)

the symmetric and antisymmetric GSs of energies E0S =
�ω and E0A = 2�ω are given by:

Ψ0S(r) =
1

l0
√
π

exp
(
−|r|2

2l20

)
(60)

and

Ψ0A(r) =
rx
√

2

l
3/2
0

√
π

exp
(
−|r|2

2l20

)
(61)

respectively. The length l0 =
√

�/(mω) becomes in our
case

l0 =

(
�

2

m

√
32D3

e2π3

)−1/4

· (62)

Discretizing the continuous Hamiltonian on L×L lat-
tice, one gets

Hl = −t
∑
〈j,j′〉

c†j cj′ + 4Nt

+
Uπ

L
√

sin2 (jx1−jx2)π
L + sin2 (jy1−jy2)π

D

, (63)

where L = D/a, U = e2/a and t = �
2/2ma2. The constant

term 4Nt comes from the discretization of the Laplacians.
For Hl, the characteristic length l0 becomes

l0 =

(
8
√

2t
ULπ3

)−1/4

D. (64)

Since l0 ∝ r
−1/4
s D in our model, one gets 〈r〉 =

√
2D

for the average inter-particle spacing and ∆r ∝ r
−1/4
s D

for the width of its distribution. Therefore, the ratio ur of
these two quantities decays as r−1/4

s . This corresponds to
the behaviors shown in Figure 1 when rF

s < rs < r∗s .
For a GS of total momentum K = 2π/D(1, 0), the

condition (57) yields the symmetric GS for Hc(r). For the
two particle GS of Hc(R) +Hc(r), one gets an energy

E0 =
�

2

4m
K2 +

e2π

D
√

2
+ �ω, (65)

where

�ω =

√
4�2

m

1
2
e2π3

D3
√

8
· (66)



Z.Á. Németh and J.-L. Pichard: Andreev-Lifshitz supersolid II 99

0.1

1

10

0.01 0.1 1 10 100 1000 10000

E
 -

 0
.1

85
U

 -
 0

.1
37

U

Fig. 18. GS energy E0 for two particles in a 12 × 12 lat-
tice as a function of U . We have plotted for convenience
E = E0−0.185U−0.137 (taking t = 1) for checking the contri-
bution ∼ U1/2 at intermediate U of equation (67). The analyt-
ical estimate (0.159

√
U , dotted line) is valid for 1 < U < 1000,

defining the continuous Wigner regime where the relative fluc-

tuation ur ∝ r
−1/4
s (Fig. 1).

This energy becomes for the corresponding lattice
Hamiltonian Hl:

E0 =
2π2

L2
t+

Uπ

L
√

2
+

√
Ut

L3

4π3

√
8
· (67)

A numerical check of this expression using a 12 × 12
lattice model is shown in Figure 18. Dividing E0 by U2/t,
one gets

E0t

U2
=

π

4r2s
+

√
π

4rs
+

π3/4

4r3/2
s

· (68)

This expansion is similar to the original expression given
by Wigner [9] for the strong coupling limit, the energy
being measured in Rydberg units. The first term gives the
kinetic energy of the center of mass (∼ r−2

s ), the second
is the electrostatic energy at equilibrium (∼ r−1

s ) and the
third term comes from the oscillations of the inter-particle
spacing around equilibrium (∼ r

−3/2
s ).

Appendix B: Correlated lattice limit
when L → ∞
We study two limits which can be easily described by
the t/U lattice perturbation theory when t → 0 and
L→ ∞.

We keep N = 3 spinless fermions in the first limit. In
this case, the hopping term ∼ h characterizing the rigid
translation of the molecule remains of order t3/U2, while
the hopping term ∼ r characterizing a single particle
hop over L/2 sites and coupling triangles of different
orientations becomes of order t(t/U)L/2−1. When L→ ∞,

Fig. 19. N = n2 − 1 spinless fermions on a square lattice of
size L = 3n for n = 4. One of the L2 square Wigner lattices

with a vacancy of energy E
(0)
0 (solid circles) and one virtual

state of energy E
(0)
1 (empty circle) contributing to the vacancy

dynamics are indicated.

only the rigid translation of the triangle matters, and the
effective Hamiltonian (Eq. (16)) reads:

H
(III)
eff =

∑
j

E
(II)
0 D†

jDj + h
∑
〈j,j′〉

D†
jDj′ , (69)

where D†
j (Dj) creates (annihilates) a triangle defined

by equation (15), replacing 3 by L/2. The resulting
energies are:

E
(III)
K = E

(II)
0 + 2h (cosKx + cosKy) , (70)

yielding a GS total momentum K = (0, 0).
We take N = n2 − 1 spinless fermions and a size

L = 3n in the second limit. N = n2 gives a uniform
filling factor ν = 1/9 and a square Wigner lattice which is
commensurate with the assumed lattice. Taking a single
particle out n2 will create a single vacancy in the square
Wigner lattice, as shown in Figure 19. In this second
limit, this is now the rigid translation of the Wigner
lattice which becomes negligible in the thermodynamic
limit, while the hopping term r characterizing the prop-
agation of the vacancy remains ∝ t3/U2. The effective
Hamiltonian (Eq. (16)) takes the form:

H
(III)
eff =

∑
j

E
(II)
0 D†

jDj + r
∑
〈j,j′〉3

D†
jDj′ . (71)

There is only a set of virtual states of energy E(0)
1 which

contribute at the lowest order to the propagation of the
vacancy (see Fig. 19), making simple to calculate r. After
Fourier transformation, the eigenenergies of the effective
Hamiltonian are given by:

E
(III)
K = E

(II)
0 +

2t3 (cos 3Kx + cos 3Ky)(
E

(0)
1 − E

(0)
0

)2 , (72)
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and corresponds to the spectrum of a single particle on
the assumed square lattice with third nearest neighbor
hopping. Of course, this one vacancy dynamics does not
totally remove the L2 GS degeneracy of the limit t → 0,
but makes very simple the study of charge propagation in
this highly correlated many particle system.

Appendix C: Nodal structure
of the three particle system

The quantum Monte-Carlo (QMC) methods are the most
powerful tools for studying large many-body systems [17].
However, the study of the ground state of fermionic sys-
tems suffers from the well known “sign problem”. One
way to avoid the negative weights that would be other-
wise generated by antisymmetric states is the fixed node
approximation [17]. The fixed node GS energy is then an
upper bound to the exact GS energy. The nodal structure
of the liquid limit is given by a simple Slater determinant
of plane waves, and of localized orbitals for the solid limit.
To know the exact nodal structure for intermediate cou-
plings is not an easy problem [18]. In this appendix, we
study the nodal structure of three spinless fermions on
a 6 × 6 lattice.

Previously, we have considered K-eigenstates, for
an interacting system which is invariant under lattice
translations. The Hamiltonian being invariant under
time-reversal symmetry, one first define eigenvectors with
real components in the site basis. For this purpose, we
combine the K-eigenvector

|ΨK(rs)〉 =
∑

k1,k2,k3
k1+k2+k3=K

Ψk1,k2,k3(rs)c
†
k1
c†k2

c†k3
|0〉 , (73)

with its time reversed conjugate −K-eigenvector:

|Ψ−K(rs)〉 =
∑

k1,k2,k3
k1+k2+k3=K

Ψk1,k2,k3(rs)c
†
−k1

c†−k2
c†−k3

|0〉 ·

(74)
Since the Ψk1,k2,k3(rs) are real, the combination

Ψj1,j2,j3(rs) =
1√
2
〈0| cj3cj2cj1

(
|ΨK(rs)〉 + |Ψ−K(rs)〉

)
(75)

is indeed real in the site basis.
We want to compare the nodal structure of this real

GS at intermediate values of rs to the two limiting nodal
structures, characterizing the GS either in the limit
rs → 0 or rs → ∞. We define the components of a vector
χ(rs, lim) by

χj1,j2,j3(rs, lim) = Ψj1,j2,j3(rs) · Ψj1,j2,j3(lim); (76)

where Ψ(lim) is the corresponding limiting GS, and we
count the number Nn(lim) of negative components of χ.
If the nodal structures of the limit and at rs are identical,
Nn(lim) = 0. However, when χj1,j2,j3(rs, lim) is almost
zero, its sign becomes undefined due to numerical preci-
sion. This is why we ignore all the components of χ below a
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Fig. 20. The number of negative components Nn(0) as a
function of rs. The solid line is obtained with a threshold ζ =
10−12. The dotted line is a guide to the eyes.
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Fig. 21. The number of negative components Nn(∞) as a
function of rs. The solid line is obtained with a threshold ζ =
10−15. The dotted line is a guide to the eyes.

given threshold ζ. The behavior of Nn(0) (Nn(∞)) where
Ψ(lim) is a liquid GS Ψ(rs = 0.1) (solid GS Ψ(rs = 103))
is shown in Figure 20 (Fig. 21).

As one can see, the nodal structure does not exhibit a
sharp transition between the two limits, but a crossover
with complex intermediate behaviors. Notably, there are
some plateau values suggesting some constant nodal struc-
ture around the intermediate values of rs where we observe
the PMWM states. This illustrates the difficulty to use a
fixed node Monte-Carlo method for describing the inter-
mediate GS on a lattice.

Appendix D: Occupation numbers in k-space

It is not only interesting to know how the system occu-
pies the real lattice, but also the reciprocal lattice. From
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Fig. 22. Occupation numbers Pk on the reciprocal lattice
(2πkx/L, 2πky/L) for rs = 0.1 (upper figure), rs = 10 (middle
figure) and rs = 40 (lower figure).
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Fig. 23. Above: Occupation numbers Pk for rs = 500. Below:
Occupation numbers Pk at rs = ∞, showing the two possible
values 1/9 (filled circles) and 0 (empty circles).

the GS wave function Ψ0(rs) of total momentum K =
2π/6(1, 1), we have calculated the occupation numbers

Pk(rs) = 〈Ψ0(rs)| d†kdk |Ψ0(rs)〉 , (77)

in k-space. Figures 22 and 23 give plots of those number
in the reciprocal lattice for increasing values of rs. When
rs → 0, only three k-states are occupied (Fig. 22). When
rs → ∞, one gets a simple pattern (Fig. 23) for K =
2π/6(1, 1), which can be analytically obtained:

Pk(rs = ∞) =

{
0 if k = 2π/6 × (odd, odd)

1/9 else.
(78)

Between the two limits, the occupation numbers Pk of
the two identified PMWMs (rs = 10 and rs = 40) have a
mixed character, where both the “solid” and the “liquid”
patterns are visible when one uses a logarithmic scale. This
is what one should expect when a “supersolid” is forming:
the usual spreading of the “Fermi sea” being accompanied
by the gradual emergence of the Fourier spectrum of the
“Wigner solid”.
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